Static models: A (relevant) message from the past

Haim Dubossarsky, h.dubossarsky@qmul.ac.uk

The Alan Turing Institute

CAMBRIDGE

Hello again!

Haim Dubossarsky

Researcher @ Change is Key! Queen Mary University of London (QMUL) Language Technology Lab, University of Cambridge The Alan Turing Institute <u>h.dubossarsky@qmul.ac.uk</u>

Outline & takehomes

old ≠ not useful

- Brief recap on static models (an introduction to some?)
 - Static models are not contextualized models
 - Explicit models: Count-based, PPMI (interpretable dimensions)
 - Predictive models: word2vec and its likes ("opaque" dimensions)
- Doing semantic change with static models: features, pros and cons
 - 1-word : all meanings polysemy
 - Measure change in meaning via cosine-distance
 - Can work well with small corpora
 - Some models provide much more detailed report of change
- Does not cover all models in this overview: e.g., topic models

Count-based models

Simple co-occurrence models within a context window Very sparse

Taken from https://corpus.byu.edu/

Count-based models

Years

Count-based models

Very rare: Most cases will not be so clear

- Highly dependent and reflects the meaning of the corpus/domain
 - True for all static & contextualized models
 - More apparent here as static models are not "pre-trained"

- **Problem**: Highly skewed for frequent collocates
 - Prepositions, function words (stopwords)
 - Solution: ????

Positive Pointwise Mutual Information (PPMI)

- Co-occurrence models within a context window with a twist
 - Twist: Mutual information measures the strength of association between the target word and its co-occurring words

Learn associativity by informativity

Positive Pointwise Mutual Information (PPMI)

Only "strong" co-occurring words are retained, hence "positive" PMI

 $PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$

From Speech and Language Processing (3rd ed.)

Advantages of explicit models (count-based & PPMI)

	$w_j = news$	$w_k = reporter$	$w_l = do$	$w_m = ceiling$
$w_i = broadcast$	1.7	0.9	0	0

- Enables a finer analysis of change (association level)
 - Used in research: Stefanowitsch & Gries Collostructions Analysis (2003)

PPMI	90			
ministe	PPMI for <i>prime</i> ²⁰¹⁰			
suspe	minister	11.26		
cut	numbers	9.51		
numbe	cut	10.1		

PPMI for <i>heart</i> medical					
attack	PPMI for <i>heart</i> standard				
chest	attack	13.4			
pacemaker	emotion	4.9			
	central	4.5			
	warmth	3.2			

Predictive models (word2vec)

- Word2vec (Mikolov et al. 2013) is a Neural Network model
 - Shallow network: 1 layer

 Uses known NN machinery: MLM, objective function, backpropogation, SGD, etc. w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t

$$J_{ heta} = rac{1}{T} \sum\limits_{t=1}^{T} ~~ \sum\limits_{-n \leq j \leq n,
eq 0} \log p\left(w_{t+j} \mid w_t
ight)$$

Vectors are now opaque & vector spaces are incomparable

Predictive models (word2vec)

Even worse models are sometimes better

- Why word2vec is more popular than PPMI?
 - Easier and more efficient implementation
 - PR: Nice demonstration of abilities (analogy solving etc.)
 - Simply because of sheer numbers of users
- Is word2vec better than PPMI? Sometimes, but often not.

Method	WordSim	WordSim	Bruni et al.	Radinsky et al.	Luong et al.	Hill et al.	Google	MSR
Simil	Similarity	Relatedness	MEN	M. Turk	Rare Words	SimLex	Add / Mul	Add / Mul
PPMI	.755	.697	.745	.686	.462	.393	.553 / .679	.306 / .535
SVD	.793	.691	.778	.666	.514	.432	.554 / .591	.408 / .468
SGNS	.793	.685	.774	.693	.470	.438	.676 / .688	.618 / .645

From Levy et. al. 2015

- Word2vec-like models are mathematically equivalent to PPMI (Levy et. al., 2014, 2015)
- Not the right question: Is word2vec better for Semantic change?

Reminder: measuring change computationaly

Lexical semantic change with w2v-like models

 Word2vec models are initiated with random parameters. Hence, if we don't do something about it, their vectors lie in difference spaces, and are incomparible.

From Conneau et al. 2018

- Solutions:
 - Aligning the vector spaces prior to comparison
 - Avoiding the need for alignment

Aligning vector spaces

We need to find $\varphi(X) \to Y$ $W^* = argmin_W ||WX - Y||_2$ $X, Y \in \mathbb{R}^d$

Under orthogonal constraint ($W^T W = I$) the solutions is:

 $U\Sigma V^{T} = SVD(YX^{T})$ $W = UV^{T}$

Assumptions

We have 1:1 mapping (dictionaries) Vector spaces are <u>comparable</u> (isometric)

Alignment is not noise free. What is the nature of the noise?

Aligning vector spaces

Avoiding alignment I

- Incremental training (Kim et al., 2014)
 - For every time step, model is initiated with the parameters of the trained model from the previous step.
 - Causes drift (noise) for the entire vector space

Avoiding alignment II

- Temporal referencing (Dubossarsky et al. 2019)
 - Words are tagged according to the time of corpus
 - Observed the least amount of noise

Example

Silken cauliflowers sown broadcast 1870 over the land. The dramatic broadcast 1970 stunned the nation.

Take homes

old ≠ not useful

- Brief recap on static models (an introduction to some?)
 - Static models are not contextualized models
 - Explicit models: Count-based, PPMI (interpretable dimensions)
 - Predictive models: word2vec and its likes ("opaque" dimensions)
- Doing semantic change with static models: features, pros and cons
 - 1-word : all meanings polysemy
 - Measure change in meaning via cosine-distance
 - Can work well with small corpora
 - Some models provide much more detailed report of change